Direct Numerical Simulations of Turbulent Flow Past Airfoils and Flat Plate Trailing Edges

5th HPCx Annual Seminar
Daresbury Laboratory, 26 November 2007

Richard D. Sandberg

Aerodynamics and Flight Mechanics Research Group
University of Southampton
Outline

• Introduction/Motivation
• Governing equations
• General features of DNS code
• Results:
 – Simulations of flat plate trailing edges
 – Simulations of NACA0012 aerofoils
• Early-user experience on HECToR
• Summary/Outlook
Introduction

• For modern aircraft in approach, fan noise and airframe noise main contributors of perceived noise on the ground

• Aerofoil noise from onshore wind turbines considerably limits their public acceptance despite economical and political need for renewable energy production

• Trailing edges one of main sources of noise, in particular for low Mach numbers

→ A detailed understanding of TE noise beneficial for design of quieter aircraft, propulsion systems and wind turbines
Introduction

Goal of present research:

conduct DNS of turbulent flows past trailing edges

- Investigate hydrodynamic field in the vicinity of trailing edge
- Evaluate broadband noise in far field
- Provide insight in mechanisms of sound generation
Introduction

What is DNS?

• Governing equations for fluid motion (Navier-Stokes equations) solved without modelling

• All length- and time-scales need to be resolved by the numerical grid and the time integration

• Important non-dim parameter: Reynolds number
 → ratio of inertial over viscous effects of a fluid

• for increasing Re, range of length/time scales larger in particular size of smallest scales decreases
 → grid resolution needs to be finer, especially at walls
Introduction

• Solving the full N-S equations to directly compute both far-field sound and near-field hydrodynamics desirable

 - With DNS avoid difficulties of commonly used hybrid approaches (coupling of numerical methods, storage of intermediate data, sensitivity to integration surfaces)
 - Uncertainties in turbulence models for noise prediction eliminated

Cases:

1. To reduce cost, consider infinitely thin flat plate with turbulent B-L on one side as generic example of sharp TE

2. Full airfoil geometry – limit is the total size of simulation → higher complexity of flow requires smaller Reynolds number
Governing equations

• Assume fluid to be ideal gas with constant specific heats
• Solve compressible continuity, momentum and energy equations in general coordinates
• Molecular viscosity through Sutherland’s law
• Pressure through equation of state

→ Five coupled nonlinear PDE that need to be solved on each grid-point for every iteration
Numerical Method

Code based on PCHAN / SBLI code

- 4th-order accurate centred scheme
- Carpenter 4th-order accurate boundary scheme
- 4th-order accurate low-storage Runge-Kutta
- no upwinding, artificial dissipation, or explicit filtering
- stability by: entropy splitting of nonlinear terms / Laplace formulation of viscous terms
- nonreflecting zonal characteristic boundary condition → highly effective / free of coefficients
Optimising Code for HPCx

• Number of allocated 3D arrays minimised

• Mass libraries linked and used for mathematical operations (e.g. $1/\rho$, $T^{1/2}$, etc)

• Redundant copying of data eliminated

• Reordered loops

→ achieved more than 50% increase of performance
Results – Flat plate

DNS of 3-D turbulent boundary layer

- Total: $106 \cdot 10^6$ points
- Memory size: ~ 59 Gb
 - Divided into 16 x 32 = 512 CPUs
- Require at least 80,000 iterations
 - 300,000 AUs
Results – Flat plate

Contours of spanwise vorticity in vicinity of TE

Iso-surfaces of Q coloured by streamwise vorticity
Results – Flat plate

Skin friction in vicinity of the trailing edge – important for drag prediction

Spanwise correlation length – used in models for noise prediction

Good agreement of theory with DNS data
Results – Flat plate

Main objective is investigation of trailing edge noise

Is trailing edge noise represented accurately by DNS?

- top side: TE noise superposed with noise of B-L and inflow
- bottom side: TE noise only

Key advantage of DNS with turbulent B-L on one side only
Results – Flat plate

To derive modified theory – assumed 2-D sound radiation

μ₀=16.2

• No spanwise variation at lower frequencies
• Spanwise variation at frequencies μ₀≥60

μ₀=85

At lower frequencies 2-D radiation assumption appears valid
Results – Airfoil

DNS of NACA-0012 airfoil, $\alpha=5^\circ$:

- $M=0.4$, $Re_c=50,000$

- Complex grid (variety of flow regimes):
 - Laminar boundary layer and separated shear layer
 - Transition to turbulence
 - Turbulent boundary layer and turbulent near-wake

Iso-contours of streamwise vorticity
Results – Airfoil

DNS of NACA-0012 airfoil at $\alpha=5^\circ$: $M=0.4$, $Re_c=50,000$

- large domain size
- resolve acoustic waves
- resolution requirement: 2571x693x96 points
 \Rightarrow $170 \cdot 10^6$ points
 \Rightarrow Memory size ~ 94 Gb

- anti-symmetric radiation
- additional noise sources

512 CPU
\Rightarrow 500,000 AUs (HPCx)
Results – Airfoil

DNS of NACA-0012 airfoil at $\alpha=5^\circ$: $M=0.4$, $Re_c=50,000$

- Acoustic pressure for individual frequencies
 - $\mu_0 \approx 2.0$
 - $\mu_0 \approx 3.7$
 - $\mu_0 \approx 9.7$

- For specific frequencies sound radiation anti-symmetric
- Additional sources present – not predicted by TE theories

→ Ongoing research
Results – Airfoil

Effect of low energy forcing on lift and drag

• Forcing added to trigger transition (3DF):
 - \(C_L \) increases
 - \(C_D \) stays approximately the same

• When forcing removed (3DU):
 - \(C_L \) stays approximately the same as case in forced case
 - Pressure drag, and hence total \(C_D \), increases significantly

Presence of forcing increases L/D by 23%
Early-user experience HECToR

• Took HPCx version of DNS code
 → compiled without modifications to source code on HECToR

• Due to significantly larger number of CPUs available:
 code was modified such that domain can be decomposed into larger number of sub-domains

→ Porting went smoothly and took less than half a day
Early-user experience HECToR

Mixing layer

Two streams with velocity ratio of 10:1 mix downstream of a splitter plate → generic example for many applications with shear layers, e.g. jets

2D Case:

- 4000x512 points → 1.1Gb memory
- 12.29 CPU s/step (64x16=1024 CPU)
 - 10.24 CPU s/step (128x16=2048 CPU) → superlinear speed-up due to cache-effects?
Early-user experience HECToR

Mixing layer – full 3D case

- $4000 \times 512 \times 225 = 460 \times 10^6$ points \rightarrow 258Gb memory (biggest CFD simulation run in the UK to date?)
- 225 planes x 12.29 CPU s/step = 2,765 CPU s/step vs 10,553 CPU s/step (actual)
Early-user experience HECToR

NACA-0006 airfoil

- 2586x691x96
 - = 171x10^6 points
- Distributed on
 32x32=1024 CPUs
- 3,280 CPU s/step

- vs 4,217 CPU s/step
 HPCx (512 CPU)

→ better performance than on HPCx for large job
Summary

• Direct Numerical Simulations of turbulent flows performed on HPCx and HECToR

• Simulations lead to improved modelling of flow in vicinity of trailing edges

• Elements of currently used prediction models for noise validated using DNS data

• Additional noise sources observed in DNS → bases for next project?

• Porting of code to HECToR without problems performance better than HPCx for large number of CPUs
END