HPCx Hardware
Overview

• Introduction
• Power5 CPUs
• Memory
• Interconnect
The HPCx Service

• EPSRC’s objectives for follow-on service to CSAR
 - aim “to deliver the optimum service resulting in world-leading science”
 - to address “the problems involved in scaling existing codes to the capability levels required”

• Capability Computing
 - use significant fraction of resource, eg 512+ CPUs

• HPCx Service won the competitive procurement
 - six-year contract worth £53M
 - technical support provided by EPCC & Daresbury Lab
 - three-phase hardware roadmap supplied by IBM
HPCx machine room
• Previously two approaches for high-end HPC
• Massively Parallel Processing
 - many single-CPU nodes each with their own memory
 - communicate using a high-speed network
 - eg Cray T3D at EPCC, Cray T3E’s at EPCC and CSAR
• Shared Memory Systems
 - multiple CPUs all sharing the same memory space
 - communicate via reads and writes to shared memory
 - eg SGI Origin 3000, SGI Altix at CSAR
• Modern systems from all vendors combine both
 - HPCx systems will all be shared-memory clusters
IBM Power5 CPU

- Building block of the HPCx system
 - 1.5 GHz clock speed
 - two independent floating point units per CPU
 - single instruction for floating point multiply-add (FMA)
 - peak is therefore 6.0 GFlops per CPU!
- Very deep pipeline
 - floating point instructions take 6 cycles to complete
 - peak performance requires 12 independent FMAs ...
 - and ability to access data from memory at that rate
- Compilers are aware of the architecture
 - even so, don’t expect more than 15-20% of peak for real codes
IBM Power5 Chip
On-Chip Storage

- Everything is based around 64-bit arithmetic
 - i.e. Fortran DOUBLE PRECISION or C double
- Each CPU has
 - 120 FP registers actually accessible by the CPU
 - Compiler sees 32 virtual FP registers
- Level 1 caches based on 128-byte lines
 - 64K direct-mapped first-level instruction cache
 - 32K 2-way associative first-level data cache
- Write through policy in L1
 - data written to L1 cache only if already allocated
 - always written to L2 cache
Power5 Chip

- A single chip comprises
 - 2 independent CPUs
 - shared L2 cache
 - peak of 12.0 Gflops

- L2 cache characteristics
 - 128-byte lines
 - 10-way associative
 - holds both instructions and data
 - 1.9Mb capacity combined data and instruction cache
 - write-back policy
Power5 Chip
Dual-Core Modules

- 2 chips are packaged together with a shared level 3 cache into a dual-core module (DCM)

- L3 cache characteristics
 - 36 Mb total capacity
 - Shared between 2 processors
 - 256-byte lines
 - 12-way associative
 - instructions and data
Larger Shared-Memory Nodes/Frames

- Each eServer 575 node contains 8 DCM's
 - 16 CPUs
 - L3 cache local to each DCM
 - 32 GB shared memory per node
 - each node runs a separate copy of the operating system
- 8 nodes make up a frame/cabinet
 - 128 CPUs
 - peak of 768 Gflops
Full system has 12 frames
- 1536 CPUs and 3072 Gb main memory
- 9.2 Tflops peak (~7.4 Tflops Linpack)

Naming convention
- $l_m f nn(n)$ is logical partition no. m in frame no. nn or nnn
- e.g. $l1f82$
Users’ Viewpoint

• Hardware is quite complicated
 - details perhaps an issue for ultimate performance
 - not really important for porting and early runs

• Don’t panic!
 - users see 96 16-way shared-memory nodes
 - think of each CPU having 2 Gb main memory
 • actually about 27Gb of memory per node is available to user:
 other 5Gb is reserved for the OS and switch

• Other hardware
 - additional nodes for logging in, IO etc
 - 100 Tb of storage on disk and tape
Interconnect

• Nodes communicate using the IBM High Performance Switch (HPS)
 - also known as Federation
 - packet based, omega-like network
 - each node has two switch connections

• Performance as measured from user MPI code
 - 6.0-6.5 microsecond latency
 - 3 GB/s bandwidth between two tasks on different nodes
 - 4 GB/s aggregate bandwidth between two nodes
Programming the System

- Expect most users to do MPI message-passing
 - using either Fortran or C

- Each CPU is programmed independently
 - shared-memory nature of nodes not an issue ...
 - ... except in terms of performance

- MPI programmers see HPCx as
 - 1536 independent processors
 - each with ~2Gb of memory
Storage

- Additional nodes for I/O
 - 36Tb of disk storage
 - 64Tb of tape storage
 - Manual archiving from disk to tape.
- Compute nodes have some local disk, but this is reserved for the OS.
 - All user I/O goes to the I/O nodes over the switch
 - I/O bandwidth from a single node effectively limited by switch bandwidth.
 - Aggregate bandwidth of ~1Gb/s from multiple nodes to same file is achievable.
Architectural Issues

• Constellation system (cluster of SMPs)
• Cached architecture
• CPUs share memory bandwidth
 - L2 and L3 cache shared as well as main memory
• CPUs share communications bandwidth
 - two switch connections among 16 processors
• Machine comms/calc balance
 - significant change from T3E
 - much faster CPUs (7x to 14x) but similar communications (1.0x to 3x)
HPCx Roadmap

- December 2002: 3.4 Tflops Linpack
 - 40x32-way p690 (Regatta H) frames + Colony Switch
- May 2004: 6.188 Tflops Linpack
 - 50x32-way Regatta H+ frames + Federation switch
- November 2005: 7.395 Tflops Linpack
 - 96x16-way eServer 575 LPARs + Federation switch
- November 2006: 12 Tflops Linpack
 - possibly 192x16-way eServer 575 LPARs + Federation switch
Conclusions

• HPCx one of the world’s most powerful machines
 - One of the largest academic supercomputers in Europe
 - upgrades should continue to keep it competitive
• Architecture similar to almost all modern systems
• Some challenges for programmers
 - eg scaling to many 100’s of CPUs
 - but do not expect any major porting problems
• Focus is on Capability Computing